29. Pathway selection in the self-assembly of Rh4L4 coordination squares under kinetic control. A. Okazawa, N. Sanada, S. Takahashi, H. Sato, S. Hiraoka* Commun. Chem. 6, 248 (2023). [DOI: 10.1038/s42004-023-01053-7] ‡: These authors equally contributed to this research.

28. Pathway bias and emergence of quasi-irreversibility in reversible reaction networks : Extension of Curtin-Hammett principle. S. Takahashi, T. Abe, H. Sato, S. Hiraoka* Chem 9, 2971–2982 (2023). [DOI: 10.1016/j.chempr.2023.06.015]プレスリリース[Link]

27. Cyclization or bridging: which occurs faster is the key to the self-assembly mechanism of Pd6L3 coordination prisms. X. Zhang, S. Takahashi, K. Aratsu, I. Kikuchi, H. Sato, and S. Hiraoka*, Phys. Chem. Chem. Phys. 24, 2997–3006 (2022). [DOI: 10.1039/D1CP04448F] ‡: These authors equally contributed to this research.

26. Unexpected self-assembly pathway to a Pd(II) coordination square- based pyramid and its preferential formation beyond the Boltzmann distribution. T, Tateishi, S. Takahashi, I. Kikuchi, K. Aratsu, H. Sato, and S. Hiraoka*, Inorg. Chem. 60, 16678–16685 (2021). [DOI: 10.1021/acs.inorgchem.1c02570]

25. Faster Cyclization than Bridging Prefers the Formation of Pd6L3 Prisms Consisting of Porphyrin-based Tetratopic Ligands under Kinetic Control. X. Zhang, S. Takahashi, K. Aratsu, T. Kojima, H. Sato, and S. Hiraoka*, submitted.

24. Coordination Self-assembly Processes Revealed by Collaboration of Experiment and Theory: Toward Kinetic Control of Molecular Self-assembly. S. Hiraoka*, S. Takahashi, and H. Sato, Chem. Rec. 21, 443 – 459 (2021). [DOI: 10.1002/tcr.202000124] (selected as Front Cover)

23. Towards Kinetic Control of Coordination Self-Assembly: A Case Study of a Pd3L6 Double-Walled Triangle to Predict the Outcomes by a Reaction Network Model. S. Takahashi,* T. Tateishi, Y. Sasaki, H. Sato, and S. Hiraoka*, Phys. Chem. Chem. Phys. 22, 26614 – 26626 (2020). [DOI: 10.1039/d0cp04623j]

22. Navigated Self-assembly of a Pd2L4 Cage by Modulation of an Energy Landscape under Kinetic Control. T. Tateishi, S. Takahashi, A. Okazawa, V. Martí-Centelles, J. Wang, T. Kojima, P. J. Lusby,* H. Sato, and S. Hiraoka*, JAm. Chem. Soc. 141, 19669 – 19676 (2019). [DOI: 10.1021/jacs.9b07779]

21. Bifurcation of Self-assembly Pathways to Sheet or Cage Controlled by Kinetic Template Effect. L. H. Foianesi-Takeshige, S. Takahashi, T. Tateishi, R. Sekine, A. Okazawa, W. Zhu, T. Kojima, K. Harano, E. Nakamura, H. Sato, and S. Hiraoka*, Commun. Chem. 2, 128 (2019).[DOI: 10.1038/s42004-019-0232-2] プレスリリース[Link]、Press release [Link]

20. Supramolecular Fluorescence Sensor for Liquefied Petroleum Gas. Y.-Y. Zhan, J. Liao, M. Kajita, T. Kojima, S. Takahashi, T. Takaya, K. Iwata, and S. Hiraoka*, Commun. Chem. 2, 107 (2019). [DOI: 10.1038/s42004-019-0212-6] プレスリリース[Link]、Press release[Link]、日本経済新聞電子版 [Link]、現代化学11月号「化学かわらばん」:超分子カプセルで液化天然ガスを検出 [Link]

19. Polarizability and Isotope Effects on Dispersion Interactions in Water. Y.-Y. Zhan, Q.-C. Jiang, K. Ishii, T. Koide, O. Kobayashi, T. Kojima, S. Takahashi, M. Tachikawa, S. Uchiyama, and S. Hiraoka*, Commun. Chem. 2, 141, (2019). [DOI: 10.1038/s42004-019-0242-0] プレスリリース [Link]、Press release [Link]

18. Self-assembly Processes of Octahedron-shaped Pd6L4 Cages. S. Komine, S. Takahashi, T. Kojima, H. Sato, and S. Hiraoka*, J. Am. Chem. Soc. 141, 3178 – 3186 (2019). [DOI: 10.1021/jacs.8b12890]

17. Self-assembly Process of a Quadruply Interlocked Palladium Cage. T. Tateishi, Y. Yasutake, T. Kojima, S. Takahashi, and S. Hiraoka*, Commun. Chem. 2, 25 (2019). [DOI10.1038/s42004-019-0123-6] プレスリリース [Link]、日本経済新聞電子版 [Link]

16. Temperature-Controlled Repeatable Scrambling and Induced-Sorting of Building Blocks Between Cubic Assemblies. Y.-Y. Zhan, T. Kojima, K. Ishii, S. Takahashi, Y. Haketa, H. Maeda, S. Uchiyama, and S. Hiraoka*, Nature Commun. 10, 1440 (2019). [DOI: 10.1038/s41467-019-09495-1] プレスリリース [Link], Press release [Link], 日本経済新聞電子版 [Link]

15. Self-assembly Processes of Pd6L12 Cages. S. Komine, T. Tateishi, T. Kojima, H. Nakagawa, Y. Hayashi, S. Takahashi, and S. Hiraoka*, Dalton Trans. 48, 4139 – 4148 (2019). (selected as Inside Front Cover and Hot Paper) [DOI: 10.1039/C8DT04931A]

14. A Stochastic Model Study on the Self-Assembly Process of a Pd2L4 Cage Consisting of Rigid Ditopic Ligands. S. Takahashi*, Y. Sasaki, S. Hiraoka*, and H. Sato*, Phys. Chem. Chem. Phys. 21, 6341 – 6347 (2019). (selected as Outside Back Cover) [DOI: 10.1039/C8CP06102E ]

13. A Kinetics Study of Ligand Substitution Reaction on Dinuclear Platinum Complexes: Stochastic Versus Deterministic Approach. T. Iioka, S. Takahashi, Y. Yoshida, Y. Matsumura, S. Hiraoka, and H. Sato* J. Comput. Chem. 1, 279 – 285 (2019). [DOI: 10.1002/jcc.25588]

12. Self-Assembly of a Pd4L8 Double-Walled Square Takes Place through Two Kinds of Metastable Species. S. Kai, T. Tateishi, T. Kojima, S. Takahashi, and S. Hiraoka*, Inorg. Chem. 57, 13083 – 13086 (2018). [DOI: 10.1021/acs.inorgchem.8b02470]

11. Induced-fit Expansion and Contraction of a Self-assembled Nanocube Finely Responding to Neutral and Anionic Guests. Y.-Y. Zhan, T. Kojima, T. Nakamura, T. Takahashi, S. Takahashi, Y. Haketa, Y. Shoji, H. Maeda, T. Fukushima, and S. Hiraoka*, Nature Commun. 9, 4530 (2018). [DOI: 10.1038/s41467-018-06874-y] プレスリリース [Link], Press release [Link]、日本経済新聞 2018年11月7日,科学新聞 2018年 11月16日 [Link], Physics Buzz 19 Nov 2018.

10. Gram-Scale Synthesis of a C2v-Symmetric Hexaphenylbenzene with Three Different Types of Substituents. J. Liao, T. Kojima, S. Takahashi, and S. Hiraoka*, Asian. J. Org. Chem7, 2057 – 2060 (2018). (selected as Cover Feature) [DOI: 10.1002/ajoc.201800448]

9. Two Dominant Self-assembly Pathways to a Pd3L6 Double-walled Triangle. T. Tateishi, S. Kai, Y. Sasaki, T. Kojima, S. Takahashi, and S. Hiraoka*, Chem. Commun. 54, 7758 – 7761 (2018). (selected as Outside Back Cover) [DOI: 10.1039/C8CC02608D]]

8. Towards Many-dimensional Real-time Quantum Theory for Heavy-particle Dynamics. II. Beyond Semiclassics by Quantum Smoothing of the Singularity in Quantum-classical Correspondence. K. Takatsuka, and S. Takahashi, Phys. Rev. A 89, 012019 (2014). [DOI: 10.1103/PhysRevA.89.012109]

7. Towards Many-dimensional Real-time Quantumtheory for Heavy Particle Dynamics. I. Semiclassics in the Lagrange Picture of Classical Phase flow. S. Takahashi, and K. TakatsukaPhys. Rev. A 89, 012108 (2014). [DOI: 10.1103/PhysRevA.89.012108]

6. Non-Born-Oppenheimer Electronic and Nuclear Wave Packet Dynamics. T. Yonehara, S. Takahashi, and K. Takatsuka, J. Chem. Phys. 130, 214113 (2009). [DOI: 10.1063/1.3151684]

5. Phase Quantization of Chaos in the Semiclassical Regime. S. Takahashi and K. Takatsuka, J. Chem. Phys. 127, 084112 (2007). [DOI: 10.1063/1.2772274]

4. Energy Quantization of Chaos with the Semiclassical Phases Alone. K. Takatsuka, S. Takahashi, Y. W. Koh and T.Yamashita, J. Chem. Phys. 126, 021104 (2007). [DOI: 10.1063/1.2431178]

3. On the Validity Range of the Born-Oppenheimer Approximation: A Semiclassical Study for All-particlequantization of Three-body Coulomb System. S. Takahashi and K. Takatsuka, J. Chem. Phys. 124, 144101(2006). [DOI: 10.1063/1.2173997]

2. Renormalized Semiclassical Quantization for Rescalable Hamiltonians. S. Takahashi and K. Takatsuka, Phys. Rev. A 70, 052103(2004). [DOI: 10.1103/PhysRevA.70.052103]

1. Geometrical Evaluation of the Maslov Index. S. Takahashi and K. Takatsuka, Phys. Rev. A 69, 022110 (2004). [DOI: 10.1103/PhysRevA.69.022110]