Original Paper

109. Assembly of six types of heteroleptic Pd2L4 cages under kinetic control. T. Abe, N. Sanada, K. Takeuchi, A. Okazawa, S. Hiraoka* J. Am. Chem. Soc. 145, 28061–28074 (2023) [DOI: 10.1021/jacs.3c09359]

108. Pathway selection in the self-assembly of Rh4L4 coordination squares under kinetic control. A. Okazawa, N. Sanada, S. Takahashi, H. Sato, S. Hiraoka* Commun. Chem. 6, 248 (2023). [DOI: 10.1038/s42004-023-01053-7] ‡: These authors equally contributed to this research.

107. Pathway bias and emergence of quasi-irreversibility in reversible reaction networks: Extension of Curtin-Hammett principle. S. Takahashi, T. Abe, H. Sato, S. HiraokaChem 9, 2971–2982 (2023). [DOI: 10.1016/j.chempr.2023.06.015] プレスリリース[Link]

106. Theoretical and computational methodologies for understanding coordination self-assembly complexes. S. Takahashi, S. Iuchi, S. Hiraoka, Hirofumi Sato*, Phys. Chem. Chem. Phys. 25, 14659–14671(2023). [DOI: 0.1039/D3CP00082F] 

105. Molecular dynamics study on the structure–property relationship of self-assembled gear-shaped amphiphile molecules with/without methyl groups. M. Murata, T. Koide, O. Kobayashi, S. Hiraoka, T. Shimazaki, M. Tachikawa*, J. Phys. Chem. B 127, 328–334 (2023). [DOI: 10.1021/acs.jpcb.2c07444]

104. Kinetically controlled narcissistic self-sorting of Pd(II)-linked self-assemblies from structurally similar tritopic ligands. T. Abe, S. Horiuchi, S. Hiraoka*, Chem. Commun. 58, 10829–10832 (2022). [DOI: 10.1039/d2cc04496j]

103. Cyclization or bridging: which occurs faster is the key to the self-assembly mechanism of Pd6L3 coordination prisms. X. Zhang, S. Takahashi, K. Aratsu, I. Kikuchi, H. Sato, and S. Hiraoka*, Phys. Chem. Chem. Phys. 24, 2997–3006 (2022). [DOI: 10.1039/D1CP04448F] ‡: These authors equally contributed to this research.

102. Unexpected self-assembly pathway to a Pd(II) coordination square- based pyramid and its preferential formation beyond the Boltzmann distribution. T, Tateishi, S. Takahashi, I. Kikuchi, K. Aratsu, H. Sato, and S. Hiraoka*, Inorg. Chem. 60, 16678–16685 (2021). [DOI: 10.1021/acs.inorgchem.1c02570]

101. Molecular “Hozo”: Thermally Stable yet Conformationally Flexible Self-assemblies Driven by Tight Molecular Meshing. Y.-Y. Zhan and S. Hiraoka*, Bull. Chem. Soc. Jpn. 94, 2329–2341 (2021). [DOI: 10.1246/bcsj.20210228] (Masterpiece Materials with Functional Excellence) (Account)

100. An Aromatic Oligomer Micelle: Large Enthalpic Stabilization and Selective Oligothiophene Uptake. Y Tsuchida, K. Aratsu, S. Hiraoka, and Michito Yoshizawa*, Angew. Chem. Int. Ed. 60, 12754-12758 (2021). [DOI: 10.1002/anie.202101453]

99. Environmental Effects on Salt Bridge Stability in the Protein–Protein Interface: The Case of Hen Egg-White Lysozyme and Its Antibody, HyHEL-10. R. Okajima, S. Hiraoka, and T. Yamashita*, J. Phys. Chem. B, 125, 1542–1549 (2021). [DOI: 10.1021/acs.jpcb.0c09248]

98. Coordination Self-assembly Processes Revealed by Collaboration of Experiment and Theory: Toward Kinetic Control of Molecular Self-assembly. S. Hiraoka*, S. Takahashi, and H. Sato, Chem. Rec. 21, 443 – 459 (2021). [DOI: 10.1002/tcr.202000124] (selected as Front Cover) (Account)

97. Towards Kinetic Control of Coordination Self-Assembly: A Case Study of a Pd3L6 Double-Walled Triangle to Predict the Outcomes by a Reaction Network Model. S. Takahashi,* T. Tateishi, Y. Sasaki, H. Sato, and S. Hiraoka*, Phys. Chem. Chem. Phys. 22, 26614 – 26626 (2020). [DOI: 10.1039/d0cp04623j]

96. Navigated Self-assembly of a Pd2L4 Cage by Modulation of an Energy Landscape under Kinetic Control. T. Tateishi, S. Takahashi, A. Okazawa, V. Martí-Centelles, J. Wang, T. Kojima, P. J. Lusby,* H. Sato, and S. Hiraoka*, JAm. Chem. Soc. 141, 19669 – 19676 (2019). [DOI: 10.1021/jacs.9b07779]

95. Bifurcation of Self-assembly Pathways to Sheet or Cage Controlled by Kinetic Template Effect. L. H. Foianesi-Takeshige, S. Takahashi, T. Tateishi, R. Sekine, A.i Okazawa, W. Zhu, T. Kojima, K. Harano, E. Nakamura, H. Sato, and S. Hiraoka, *Commun. Chem. 2, 128 (2019).[DOI: 10.1038/s42004-019-0232-2] プレスリリース[Link]、Press release [Link]

94. Supramolecular Fluorescence Sensor for Liquefied Petroleum Gas. Y.-Y. Zhan, J. Liao, M. Kajita, T. Kojima, S. Takahashi, T. Takaya, K. Iwata, and S. Hiraoka*, Commun. Chem. 2, 107 (2019). [DOI: 10.1038/s42004-019-0212-6] プレスリリース[Link]、Press release [Link]、日本経済新聞電子版 [Link]、現代化学11月号「化学かわらばん」:超分子カプセルで液化天然ガスを検出 [Link]

93. Polarizability and Isotope Effects on Dispersion Interactions in Water. Y.-Y. Zhan, Q.-C. Jiang, K. Ishii, T. Koide, O. Kobayashi, T. Kojima, S. Takahashi, M. Tachikawa, S. Uchiyama, and S. Hiraoka*, Commun. Chem. 2, 141, (2019). [DOI: 10.1038/s42004-019-0242-0] プレスリリース [Link]、Press release [Link]

92. Molecular Dynamics Study on Dynamical Features of Reorganization Process for Nanocapsule Formed with Gear-shaped Amphiphile Molecules. T. Mashiko, S. Hiraoka, U. Nagashima, and M. Tachikawa*, J. Phys. Chem. B 123, 5176–5180 (2019). [DOI: 10.1021/acs.jpcb.9b02156]

91. Self-assembly Processes of Octahedron-shaped Pd6L4 Cages. S. Komine, S. Takahashi, T. Kojima, H. Sato, and S. Hiraoka*, J. Am. Chem. Soc. 141, 3178 – 3186 (2019). [DOI: 10.1021/jacs.8b12890]

90. Self-assembly Process of a Quadruply Interlocked Palladium Cage. T. Tateishi, Y. Yasutake, T. Kojima, S. Takahashi, and S. Hiraoka*, Commun. Chem. 2, 25 (2019). [DOI10.1038/s42004-019-0123-6] プレスリリース [Link]、日本経済新聞電子版 [Link

89. Temperature-Controlled Repeatable Scrambling and Induced-Sorting of Building Blocks Between Cubic Assemblies. Y.-Y. Zhan, T. Kojima, K. Ishii, S. Takahashi, Y. Haketa, H. Maeda, S. Uchiyama, and S. Hiraoka*, Nature Commun. 10, 1440 (2019). [DOI: 10.1038/s41467-019-09495-1]プレスリリース [Link]、Press release [Link]、日本経済新聞電子版 [Link]

88. Self-assembly Processes of Pd6L12 Cages. S. Komine, T. Tateishi, T. Kojima, H. Nakagawa, Y. Hayashi, S. Takahashi, and S. Hiraoka*, Dalton Trans. 48, 4139 – 4148 (2019). (selected as Inside Front Cover and Hot Paper) [DOI: 10.1039/C8DT04931A]

87. Self-assembly Processes of Pd(II)- and Pt(II)-linked Discrete Self-assemblies Revealed by QASAP. S. Hiraoka*, Isr. J. Chem. 59, 151 – 165 (2019) (Invited Review). [DOI: 10.1002/ijch.201800073]

86. A Stochastic Model Study on the Self-Assembly Process of a Pd2L4 Cage Consisting of Rigid Ditopic Ligands. S. Takahashi*, Y. Sasaki, S. Hiraoka*, and H. Sato*, Phys. Chem. Chem. Phys. 21, 6341 – 6347 (2019). (selected as Outside Back Cover) [DOI: 10.1039/C8CP06102E ]

85. A Kinetics Study of Ligand Substitution Reaction on Dinuclear Platinum Complexes: Stochastic Versus Deterministic Approach. T. Iioka, S. Takahashi, Y. Yoshida, Y. Matsumura, S. Hiraoka, and H. Sato*, J. Comput. Chem. 1, 279 – 285 (2019). [DOI: 10.1002/jcc.25588]

84. Self-Assembly of a Pd4L8 Double-Walled Square Takes Place through Two Kinds of Metastable Species. S. Kai, T. Tateishi, T. Kojima, S. Takahashi, and S. Hiraoka*, Inorg. Chem. 57, 13083 – 13086 (2018). [DOI: 10.1021/acs.inorgchem.8b02470]

83. Self-Assembly of Nanocubic Molecular Capsules via Solvent-Guided Formation of Rectangular Blocks. T. Yamamoto*, H. Arefi, S. Shanker, H. Sato*, and S. Hiraoka*, J. Phys. Chem. Lett. 9, 6082 – 6088 (2018). [DOI: 10.1021/acs.jpclett.8b02624]

82. Induced-fit Expansion and Contraction of a Self-assembled Nanocube Finely Responding to Neutral and Anionic Guests. Y.-Y. Zhan, T. Kojima, T. Nakamura, T. Takahashi, S. Takahashi, Y. Haketa, Y. Shoji, H. Maeda, T. Fukushima, and S. Hiraoka*, Nature Commun. 9, 4530 (2018). [DOI: 10.1038/s41467-018-06874-y], プレスリリース [Link], Press release [Link]、日本経済新聞 2018年11月7日, 科学新聞 2018年 11月16日 [Link], Physics Buzz 19 Nov 2018

81. Gram-Scale Synthesis of a C2v-Symmetric Hexaphenylbenzene with Three Different Types of Substituents. J. Liao, T. Kojima, S. Takahashi, and S. Hiraoka*, Asian J. Org. Chem. 7, 2057 – 2060 (2018). (selected as Cover Feature) [DOI: 10.1002/ajoc.201800448]

80. Two Dominant Self-assembly Pathways to a Pd3L6 Double-walled TriangleT. Tateishi, S. Kai, Y. Sasaki, T. Kojima, S. Takahashi, and S. Hiraoka*, Chem. Commun. 54, 7758 – 7761 (2018). (selected as Outside Back Cover) [DOI: 10.1039/C8CC02608D]

79. Multicomponent Self-Assembly of Metallo-Supramolecular Macrocycles and Cages via Dynamic Heteroleptic Terpyridine Complexation. S.-Y. Wang, J.-Y. Huang, Y.-P. Liang, Y.-J. He, Y.-S. Chen, Y.-Y. Zhan, S. Hiraoka, Y.-H. Liu, S.-M. Peng, and Y.-T. Chan*, Chem. Eur. J. 24, 9274 – 9284 (2018). [DOI: 10.1002/chem.201801753]

78. Energy-Landscape-Independent Kinetic Trap of Incomplete Cage in the Self-assembly of a Pd2L4 Cage. M. Nakagawa, S. Kai, T. Kojima, and S. Hiraoka*, Chem. Eur. J. 24, 8804 – 8808 (2018). (selected as Hot Paper and Inside Cover) [DOI: 10.1002/chem.201801183]

77. Selective Preparation of C2v-Symmetric Hexaphenylbenzene Derivatives Through Sequential Suzuki Coupling. K. Ogata, T. Kojima*, and S. Hiraoka*, Synlett 29, 1597 – 1600 (2018). [DOI: 10.1055/s-0037-1610024] (Highlighted in SYNFORM [Link])

76. A Balance Between van der Waals and Cation-π Interactions That Stabilizes Hydrophobic Assemblies. Y.-Y. Zhan, T. Kojima, T. Koide, M. Tachikawa, and S. Hiraoka*, Chem. Eur. J. 24, 9130 – 9135 (2018). [DOI:10.1002/chem.201801376]

75. Importance of Molecular Meshing for the Stabilization of Solvophobic Assemblies. Y.-Y. Zhan, N. Tanaka, Y. Ozawa, T. Kojima, T. Mashiko, U. Nagashima, M. Tachikawa, and S. Hiraoka*, J. Org. Chem. 83, 5132 – 5137 (2018). [DOI: 10.1021/acs.joc.8b00495]

74. How Does Chiral Self-sorting Take Place in the Formation of Homochiral Pd6L8 Capsules Consisting of Cyclotriveratrylene-based Chiral Tritopic Ligands? S. Kai, T. Kojima, F. L. Thorp-Greenwood, M. J. Hardie, S. Hiraoka*, Chem. Sci. 9, 4104 – 4108 (2018). [DOI: 10.1039/C8SC01062E]

73. Unresolved Issues that Remain in Molecular Self-Assembly. S. Hiraoka*, Bull. Chem. Soc. Jpn. 91, 957–978 (2018). (Commemorative Accounts: Self-Organization). (Invited Account) [DOI: 10.1246/bcsj.20180008] (Inside Cover)

72. 歯車状両親媒性分子からなるナノキューブの置換基効果と溶媒効果の理論的研究. 増子貴子,平岡秀一,長嶋雲兵,立川仁典*, J. Comput. Chem. Jpn. 17, 31–37 (2018). [DOI: 10.2477/jccj.2018-0010]

71. Chiral Self-sorting Process in the Self-assembly of Homochiral Coordination Cages from Axially Chiral Ligands. T. Tateishi, T. Kojima, and S. Hiraoka*, Commun. Chem. 1, 20 (2018). [DOI: 10.1038/s42004-018-0020-4]. プレスリリース[Link], 日本経済新聞電子版 [Link]

70. Programed Dynamical Ordering in the Self-organization Processes of a Nanocube: A Molecular Dynamics Study. R. Harada,* T. Mashiko, M. Tachikawa, S. Hiraoka, and Y. Shigeta*, Phys. Chem. Chem. Phys. 20, 9115–9122 (2018). [DOI: 10.1039/C8CP00284C]

69. Semi-quantitative Evaluation of Molecular Meshing by Surface Analysis with Varying Probe Radii. N. Tanaka, Y.-Y. Zhan, Y. Ozawa, T. Kojima, T. Koide, T. Mashiko, U. Nagashima, M. Tachikawa, and S. Hiraoka*, Chem. Commun. 54, 3335–3338 (2018). (selected as Outside Back Cover) [DOI: 10.1039/c8cc00695d]

68. Flexibility of Components Alters the Self-assembly Pathway of Pd2L4 Coordination Cages. S. Kai, S. P. Maddala, T. Kojima, S. Akagi, K. Harano, E. Nakamura, and S. Hiraoka*, Dalton Trans. 47, 3258–3263 (2018) (selected as Outside Front Cover). [DOI: 10.1039/C8DT00112J

67. Hyperthermostable Cube-shaped Assembly in Water. Y.-Y. Zhan, K. Ogata, T. Kojima, T. Koide, K. Ishii, T. Mashiko, M. Tachikawa, S. Uchiyama, and S. Hiraoka*, Commun. Chem. 1, 14 (2018). [DOI: 10.1038/s42004-018-0014-2] プレスリリース[Link]、科学新聞、 化学工業日報 [Link]

66. Multiple Pathways in the Self-assembly Process of a Pd4L8 Coordination Tetrahedron. T. Tateishi, T. Kojima, and S. Hiraoka*, norg. Chem. 57, 2686–2694 (2018). [DOI: 10.1021/acs.inorgchem.7b03085]

65. Chiral Effects on the Final Step of an Octahedron-Shaped Coordination Capsule Self-Assembly. Y. Matsumura, S. Iuchi, S. Hiraoka, and H. Sato*, Phys. Chem. Chem. Phys. 20, 7383–7386 (2018) (selected as Hot Paper and Outside Back Cover). [DOI: 10.1039/C7CP08237A]

64. Self-assembly of a Pd4L8 Double-walled Square Partly Takes Place through the Formation of Kinetically Trapped Species. T. Tateishi, W. Zhu, L. H. Foianesi-Takeshige, T. Kojima, K. Ogata, and S. Hiraoka*, Eur. J. Inorg. Chem. 1192–1197 (2018). [DOI: 10.1002/ejic.201800037]

63. Self-Assembly Processof a Pd2L4 Capsule: Steric Interactions between Neighboring Components Favor the Formation of Large Intermediates. S. Kai, M. Nakagawa, T. Kojima, X. Li, M. Yamashina, M. Yoshizawa, and S. Hiraoka*, Chem. Eur. J. 24, 3965–3969 (2018). (selected as Hot Paper and Cover Feature] [DOI: 10.1002/chem.201705253]

62. Quantitative Analysis of Self-Assembly Process of Hexagonal Pt(II) Macrocyclic Complexes: Effect of Solvent and Components. A. Baba, T. Kojima, and S. Hiraoka*, Chem. Eur. J. 24, 838–847 (2018). (selected as Hot Paper, Front Cover and Cover Profile) [DOI: 10.1002/chem.201702955]

61. Quantitative Analysis of Self-Assembly Process of a Pd2L4 Cage Consisting of Rigid Ditopic Ligands. S. Kai, V. Marti-Centelles, Y. Sakuma, T. Mashiko, T. Kojima, U. Nagashima, M. Tachikawa, P. J. Lusby, and S. Hiraoka*, Chem. Eur. J. 24, 663–671 (2018). [DOI: 10.1002/chem.201704285]

60. Quantitative Analysis of Self-assembly Process of a Pd12L24 Coordination Sphere. S. Kai, T. Shigeta, T. Kojima, and S. Hiraoka*, Chem. Asian J. 12, 3203–3207 (2017). [DOI: 10.1002/asia.201701351

59. The Effect of Solvent and Coordination Environment of Metal Source on the Self-Assembly Pathway of a Pd(II)-mediated Coordination Capsule. S. Kai, Y. Sakuma, T. Mashiko, T. Kojima, M. Tachikawa, and S. Hiraoka*, Inorg. Chem. 56, 12652-12663 (2017). [DOI: 10.1021/acs.inorgchem.7b02152

58. A Reaction Model on the Self-assembly Process of Octahedron-shaped Coordination Capsules. Y. Matsumura, S. Hiraoka, and H. Sato*, Phys. Chem. Chem. Phys. 19, 20338–20342 (2017). [DOI: 10.1039/c7cp03493h]

57. Theoretical Study on Substituent and Solvent Effects for Nanocubes Formed with Gear-shaped Amphiphile Molecules. T. Mashiko, S. Hiraoka, U. Nagashima, and M. Tachikawa*, Phys. Chem. Chem. Phys. 19, 1627–1631 (2017). [DOI: 10.1039/c6cp07754d]

56. Homochiral Self-Sorted and Emissive IrIII Metallo-Cryptophanes. V. E. Pritchard, D. R. Martir, S. Oldknow, S. Kai, S. Hiraoka, N. J. Cookson, E. Zysman-Colman,* and M. J. Hardie*, Chem. Eur. J. 23, 6290 – 6294 (2017). [DOI: 10.1002/chem.201701348]

55. What Do We Learn from the Molecular Self-Assembly Process? S. Hiraoka*, Chem. Rec. 15, (6), 1144-1147 (2015). [DOI: 10.1002/tcr.201510005]

54. Self-Assembly Process of Dodecanuclear Pt(II)-Linked Cyclic Hexagon. A. Baba, T. Kojima, and S. Hiraoka*, J. Am. Chem. Soc. 137, 7664-7667 (2015). [DOI: 10.1021/jacs.5b04852

53. Molecular Dynamics Simulations of Self-Assembled Nanocubes in Methanol. T. Mashiko, K. Yamada, S. Hiraoka, U. Nagashima, and M. Tachikawa*, Molecular Simulation 41, 845–849 (2015) [DOI: 10.1080/08927022.2014.940523]

52. Mesityllithium and p-(Dimethylamino)phenyllithium for the Selective Alternate Trilithiation of the Hexaphenylbenzene Framework. T. Kojima* and S. Hiraoka*, Chem. Commun. 50, 10420 – 10423 (2014) [DOI: 10.1039/C4CC04520C]

51. Rate-Determining Step in the Self-Assembly Process of Supramolecular Coordination Capsules. Y. Tsujimoto, T. Kojima, and S. Hiraoka*, Chem. Sci. 5, 4167-4172 (2014). [DOI: 10.1039/C4SC01652A] (selected as Outside Back Cover [PDF])

50. Selective Alternate Derivatization of the Hexaphenylbenzene Framework through a Thermodynamically Controlled Halogen Dance. T. Kojima* and S. Hiraoka*, Org. Lett. 16, 1024-1027 (2014).[DOI: 10.1021/ol500041j]

49. Molecular Dynamics and Principal Components Analysis for a Self-assembled Nanocube in Aqueous Solution. T. Mashiko, K. Yamada, T. Kojima, S. Hiraoka, U. Nagashima, and M. Tachikawa*, Chem. Lett. 43, 366–368 (2014).[DOI: 10.1246/cl.130928]

48. Temperature Dependence of Self-Assembled Molecular Capsules Consisting of Gear-Shaped Amphiphile Molecules with Molecular Dynamics Simulations, J. Koseki, Y. Kita, S. Hiraoka, U. Nagashima, and M. Tachikawa*, Int. J. Quant. Chem. 113, 397 (2013). [DOI: 10.1002/qua.24108]

47. Proline Recognition through C­H···π Interaction within Crystal Structures of DL-Proline­ Calix[4]pyrogallolarene Molecular Complexes. I. Fujisawa, N. Harima, K. Takagi, S. Hiraoka, M. Shionoya, K Murayama, S Itsuno,R. Kato, K. Aoki*, Bull. Chem. Soc. Jpn. 85, 1037 – 1039 (2012). [DOI: 10.1246/bcsj.20120025]

46. Role of CH-π Interaction Energy in Self-Assembled Gear-Shaped Amphiphile Molecules: Correlated ab initio Molecular Orbital and Density Functional Theory Study. J.Koseki, Y.Kita, S.Hiraoka, U.Nagashima, and M.Tachikawa*, Theor. Chem. Acc. 130, 1055-1059 (2011). [DOI: 10.1007/s00214-011-1053-2]

45. In-water Truly Monodisperse Aggregation of Gear-Shaped Amphiphiles Based on Hydrophobic Surface Engineering. S. Hiraoka,* T. Nakamura, M. Shiro, and M. Shionoya*, J. Am. Chem. Soc. 132, 13223-13225 (2010). [DOI: 10.1021/ja1069135]

44. A Synthetic Approach to a Molecular Crank Mechanism: Toward Intramolecular Motion Transformation between Rotation and Translation. E. Okuno, S. Hiraoka,* M. Shionoya*, Dalton Trans. 39, 4107-4116 (2010). [DOI: 10.1039/B926154K]

43. Site-Selective Ligand Exchange on a Heteroleptic Ti(IV) Complex towards Stepwise Multicomponent Self-Assembly. Y. Sakata, S. Hiraoka,* and M. Shionoya*, Chem. Eur. J. 16, 3318-3325 (2010). [DOI: 10.1002/chem.200903509]

42. A Molecular Double Ball Bearing: A Ag(I)-Pt(II) Dodecanuclear Quadruple-Decker Complex having Three Rotors. S. Hiraoka,* Y. Hisanaga, M. Shiro, and M. Shionoya*, Angew. Chem. Int. Ed. 49, 1669-1673 (2010). [DOI: 10.1002/anie.200905947] (Highlighted in SYNFACTS

41. Site-Selective Internally-Cross-Linking between Mercury(II)-Centered Vertices of an Octahedral Hexanuclear Mercury (II) Capsule by a Rod-Shaped Ditopic Ligand. S. Hiraoka,* M. Kiyokawa, S. Hashida, and M. Shionoya*, Angew. Chem. Int. Ed. 49, 138-143 (2010). [DOI:10.1002/anie.200905449 ]

40. Induced-Fit Formation of a Tetrameric Organic Capsule consisting of Hexagram-Shaped Amphiphile. S. Hiraoka,* K. Harano, T. Nakamura, M. Shiro, and M. Shionoya*, Angew. Chem. Int. Ed. 48, 7006-7009, (2009). [DOI:10.1002/anie.200902652

39. Template-Directed Synthesis of a Covalent Organic Capsule based on a 3 nm-Sized Metallo-Capsule. S. Hiraoka,* Y. Yamauchi, R. Arakane, and M. Shionoya*, J. Am. Chem. Soc. 131, 11646-11647 (2009). [DOI: 10.1021/ja903324r]  (Highlighted in Nature Chemistry)

38. Alternate Arrangement of Two Different Metals at Chemically-Equivalent Biding Sites on a Circle. S. Hiraoka,* M. Goda, and M. Shionoya*, J. Am. Chem. Soc. 131, 4592-4593 (2009). [DOI: 10.1021/ja9006113]

37. A Self-Assembled Organic Capsule Formed from the Union of Six Hexagram-Shaped Amphiphile Molecules. S. Hiraoka,* K. Harano, M. Shiro, and M. Shionoya*, J. Am. Chem. Soc. 130, 14368-14369 (2008). [DOI: 10.1021/ja804885k]

36. Ti(IV)-Centerd Interconversion between Pd(II), Ti(IV)-containing Ring and Cage Molecules. S. Hiraoka,* Y. Sakata, and M. Shionoya*, J. Am. Chem. Soc. 130, 10058-10059 (2008). [DOI: 10.1021/ja803115j]

35. Ranging Correlated Motion (1.5 nm) of Two Coaxially Arranged Rotors Mediated by Helix Inversion of a Supramolecular Transmitter. S. Hiraoka,* E. Okuno, T. Tanaka, M. Shiro, and M. Shionoya*, J. Am. Chem. Soc. 130, 9089-9098 (2008). [DOI: 10.1021/ja8014583] (Highlighted in Science)

34. 3nm-Scale molecular Switching between Fluorescent Capsule and Non-Fluorscent Cage. K. Harano, S. Hiraoka, and M. Shionoya*, J. Am. Chem. Soc. 129, 5300-5301 (2007). [DOI: ]

33. Convergent Access to Macrocycles via Reversible Transacetalization. A. Yokoyama, Y. Nonaka, D. Uchida, S. Hiraoka, and T. Yokozawa*, Chem. Lett. 35, 424-425 (2006). [DOI: ]

32. Electrostatically Controlled Hierarchical Arrangement of Monocationic Silver(I) and Dicationic Mercury(II) Ions between Disk-Shaped Template Ligands. S. Hiraoka, T. Tanaka, and M. Shionoya*, J. Am. Chem. Soc. 128, 13038-13039 (2006). [DOI: 10.1021/ja064194f]

31. Isostructural Coordination Capsules for a Series of 10 Different d5-d10 Transition-Metal Ions. S. Hiraoka, K. Harano, M. Shiro, Y. Ozawa, N. Yasuda, K. Toriumi, and M. Shionoya*, Angew. Chem. Int. Ed. 45, 6488-6491 (2006). [DOI: ] (VIP paper & Cover Picture)

30. Simultaneous Construction of Polymer Backbone and Side Chains by Three-Component Polycondensation. Synthesis of Polyethers with Propargyl Side Chains from Dialdehydes, Alkylene Bis(trimethylsilyl) Ethers, and Allenyltrimethylsilane. L. Niimi, S. Hiraoka, and T. Yokozawa*, J. Poly. Sci., Part A: Polymer. Chem. 43, 5440-5448 (2005). [DOI: 10.1002/pola.21003]

29. Quantitative Dynamic Interconversion between Ag(I)-Mediated Capsule and Cage Complexes Accompanying Guest Encapsulation/Release. S. Hiraoka, K. Harano, M. Shiro, and M. Shionoya*, Angew. Chem. Int. Ed. 44, 2727-2731 (2005). [DOI: ]

28. Solvent Effect on Chain-Growth Polycondensation for Aromatic Polyethers. Y. Suzuki, S. Hiraoka, A. Yokoyama, and T. Yokozawa*, J. Poly. Sci., Part A: Polymer. Chem. 42, 1198-1207 (2004). [DOI: 10.1002/pola.11060]

27. A Molecular Ball Bearing Mediated by Multi-Ligand Exchange in Concert. S. Hiraoka, K. Hirata, and M. Shionoya*, Angew. Chem. Int. Ed. 43, 3814-3818 (2004). [DOI: ]

26. Heterotopic Assemblage of Two Different Disk-Shaped Ligands through Silver(I) Complexation: Ligand Exchange Driven Molecular Motion. S. Hiraoka, M. Shiro, and M. Shionoya*, J. Am. Chem. Soc. 126, 1214-1218 (2004). [DOI: 10.1021/ja036388q] (Highlighted in Nature)

25. Artificial Nucleosides Possessing Metal Binding Sites at the 3’- and 5’-Positions of the Deoxyribose Moieties. J. Chiba, K. Tanaka, Y. Ohshiro, R. Miyake, S. Hiraoka, M. Shiro, and M. Shionoya*, J. Org. Chem. 68, 331-338 (2003). [DOI: ]

24. Chain-Growth Polycondensation of Potassium 3-Cyano-4-Fluorophenolate Derivatives for Well-Defined Poly(arylene ether)s. Y. Suzuki, S. Hiraoka, A. Yokoyama, and T. Yokozawa*, Macromol. Symp. 199 (Polycondensation 2002), 37-46 (2003). [DOI: ]

23. Chain-Growth Polycondensation for Aromatic Polyethers with Low Polydispersities: Living Polymerization Nature in Polycondensation. Y. Suzuki, S. Hiraoka, A. Yokoyama, and T. Yokozawa*,  Macromolecules 36, 4756-4765 (2003). [DOI: ]

22. Quantitative Formation of Sandwich-Shaped Trinuclear Silver(I) Complexes and Dynamic Nature of Their P⇄M Flip Motion in Solution. S. Hiraoka, K. Harano, T. Tanaka, M. Shiro, and M. Shionoya*, Angew. Chem. Int. Ed. 42, 5182-5184 (2003). [DOI: 10.1002/anie.200351068]

21. Triangular and Tetrahedral Array of Silver(I) Ions by a Novel Disk-Shaped Tridentate Ligand: Dynamic Control of Coordination Equilibrium of the Silver(I) Complexes. S. Hiraoka, T. Yi, M. Shiro, and M. Shionoya*, J. Am. Chem. Soc. 124, 14510-14511 (2002). [DOI: 10.1021/ja028659n]

20. Syntheses and Structure-Activity Relationships of Nonnatural β-C-Nucleoside 5’-Triphosphates Bearing an Aromatic Nucleobase with Phenolic Hydroxy Groups: Inhibitory Activities against DNA Polymerases. S. Aketani, K. Tanaka, K. Yamamoto, A. Ishihama, H. Cao, A. Tengeiji, S. Hiraoka, M. Shiro, and M. Shionoya*, J. Med. Chem. 45, 5594-5603 (2002). [DOI: ]

19. Simultaneous Construction of the Polymer Backbone and Side Chains by Three-Component Polycondensation: The Synthesis of Polyurethanes with Allyl Side Chains from Dialdehyde, Alkylene N,N’-Bis(trimethylsilyl) Carbamate, and Allyl-trimethyl Silane. L. Niimi, K. Serita, S. Hiraoka, and T. Yokozawa*, J. Poly. Sci., Part A: Polymer Chem. 40, 1236-1242 (2002). [DOI: ]

18. Simultaneous Construction of Polymer Backbone and Side Chains by Three-Component Polycondensation. Synthesis of Polyethers with Allenyl Side Chains from Dialdehydes, Alkylene Bis(trimethylsilyl) Ethers, and Propargyltrimethylsilane. L. Niimi, K. Shiino, S. Hiraoka, and T. Yokozawa*, Macromolecules 35, 3490-3494 (2002). [DOI: 10.1021/ma011674c]

17. Lewis Acid-Catalyzed Three-Component Condensation Reactions of Aldehydes, Alkoxysilanes, and Allenylsilanes: Aynthesis of a Propargyl Ethers. L. Niimi, S. Hiraoka, and T. Yokozawa*, Tetrahedron 58, 245-252 (2002). [DOI: ]

16. Chain-Growth Polycondensation in Solid-Liquid Phase with Ammonium Salts for Well-Defined Polyesters. T. Yokozawa,* D. Maeda, N. Hiyama, and S. Hiraoka, Macromolecular Chem. and Phys. 202, 2181-2186 (2001). [DOI: ]

15. Aromatic Polyethers with Low Polydispersities from Chain-Growth Polycondensation. T. Yokozawa,* Y. Suzuki, and S. Hiraoka, J. Am. Chem. Soc. 123, 9902-9903 (2001). [DOI: ]

14. Lewis Acid-Catalyzed Three-Component Condensation Reactions of Aldehydes, Alkoxysilanes, and Propargylsilane: Synthesis of α-Allenyl Ethers. L. Niimi, K. Shiino, S. Hiraoka, and T. Yokozawa*, Tetrahedron Lett. 42, 1721-1724 (2001). [DOI: ]

13. Mesyloxy-Group Migration as the Stereoselective Preparation Method of Various Functionalized Olefins and its Reaction Mechanism. T. Yamazaki,* S. Hiraoka, J. Sakamoto, and T. Kitazume*, Org. Lett. 3, 743-746 (2001). [DOI: ]

12. Lewis Acid-Catalyzed Three-Component Condensation Reactions of Aldehydes, N-Silylcarbamates, and Allylsilane: Synthesis of N-Homoallylcarbamates. L. Niimi, K. Serita, S. Hiraoka, and T. Yokozawa*, Tetrahedron Lett. 41, 7075-7078 (2000). [DOI: ]

11. Chain-Growth Polycondensation for Nonbiological Polyamides of Defined Architecture. T. Yokozawa,* T. Asai, R. Sugi, S. Ishigooka, and S.Hiraoka, J. Am. Chem. Soc. 122, 8313-8314 (2000). [DOI: ]

10. Diastereoselective Construction of Novel Sugars Containing Variously Fluorinated Methyl Groups as Intermediated. T. Yamazaki,* S. Hiraoka, and T. Kitazume*, ACS Symp. Ser. 746 (Asymmetric Fluoroorganic Chemistry), 142-156 (2000). [DOI: ]

9. Computational Interpretations on 5-Endo-trig Cyclization of Terminally Difluorinated Homoallylic Alkoxydes, T. Yamazaki,* S. Hiraoka, J. Sakamoto, and T. Kitazume, *J. Fluorine Chem. 101, 309-313 (2000). [DOI: ]

8. Self- and Hetero-Recognition in the Guest-Controlled Assembly of Pd(II)-Linked Cages from Two Different Ligands. S. Hiroaka, Y. Kubota, and M. Fujita*, Chem. Commun. 1509-1510 (2000). [DOI: ]

7. Guest-Selected Formation of Pd(II)-Linked Cages from a Prototypical Dynamic Library.S. Hiraoka and M. Fujita*, J. Am. Chem. Soc. 121, 10239-10240 (1999). [DOI: ]

6. Anionic 5-Endo-Trig Cyclization of Terminally Difluorinated Homoallylic Alkoxides. T. Yamazaki,* S. Hiraoka, J. Sakamoto, and T. Kitazume*, J. Phys. Chem. A 103, 6820-6824 (1999). [DOI: ]

5. Stereoselective Hydrogenation of D-Glucose-Derived Endo-Olefins with a CF3 Group — Experimental and Theoretical Explanations. S. Hiraoka, T. Yamazaki, and T. Kitazume*, Heterocycles 47, 129-132 (1998). [DOI: 10.3987/COM-97-S(N)49]

4. Highly Regio- and Stereoselective Alkyl Substitution with Copper Reagents for the Construction of Chiral Trifluoromethylated Quaternary Carbon Centers. S. Hiraoka, T. Yamazaki, and T. Kitazume*, Chem. Commun. 1497-1498 (1997). [DOI: ]

3. Highly Sstereoselective Introduction of Fluorine-Containing Methyl Groups at 2-Position of D-Glucose. S. Hiraoka, T. Yamazaki, and T. Kitazume*, Synlett 669-670 (1997). [DOI: ]

2. Highly Stereoselective Route to Aldol Products Incorporating Fluorine-Containing Methyl Groups Starting from a Single D-Glucose-Derived Intermediate. T. Yamazaki, S. Hiraoka, and T. Kitazume*, Tetrahedron: Asym. 8, 1157-1160 (1997). [DOI: ]

1. Ready Carbon-Carbon Bond Formation of 2-(Trifluoromethyl)acrylate via Michael Addition Reactions. T. Yamazaki, S. Hiraoka, and T. Kitazume*, 1J. Org. Chem. 59, 5100-5103 (1994). [DOI: ]

解説記事

14. van der Waals相互作用を活用した物質合成小島 達央・平岡 秀一化学, 73, (9), 68 – 69 (2018).

13. キラルセルフソーティング の機構:どのようにエナンチオマーの選別が起こるのか立石 友紀・小島 達央・平岡 秀一現代化学, 9月号(570), 64 – 68 (2018).

12. 水の不思議と自己組織化平岡秀一現代化学 No. 555, (6), 34–36 (2017).

11. 自己組織化の過程を調べる平岡秀一,現代化学, 3, 30 – 35 (2015).

10. なぜヤモリは壁に貼りついて歩けるのか?平岡秀一じっきょう理科資料,78,14-18 (2015).

9. 一義集合体を形成するための疎水表面エンジニアリング平岡秀一,有機合成化学協会誌,69, 671-679 (2011).

8. 運動機能をもつ自己集合性超分子金属錯体 平岡秀一,塩谷光彦,日本結晶学会誌,51, 211-217 (2009).

7. 金属錯体を使って分子レベルの機械部品をつくる 平岡秀一,化学と教育,57,Vol. 4,192-193 (2009).

6. 多点配位子交換を利用した回転素子・運動伝搬素子の開発 平岡秀一,未来材料,9,Vol. 5,6-14 (2009).

5. 動く分子から 動きを伝える分子へ 塩谷光彦,平岡秀一,現代化学,東京化学同人,No. 457,28-33 (2009).

4. 分子ボールベアリング、モーショントランスミッターの開発 平岡秀一,「最新 分子マシン -ナノで働く”高度な機械”を目指して」,化学同人編集部編,(分担執筆、化学同人) 61-70, (2008).

3. ディスク状三座配位子から作られる動的カプセル錯体 平岡秀一,Bull. Jpn. Soc. Coord. Chem., 49, 24-33 (2007)(Award Account).

2. ディスク状多座配位子を利用した金属錯体型動的分子の開発 平岡秀一,化学と工業、59,No. 2, 120-123 (2006).

1. 金属錯体で動く分子をつくる 塩谷光彦,平岡秀一,化学,59,No. 11, 70-71 (2004).

著書

9. ブラックマン基礎化学Allen Blackman, Adam Bridgeman, Gwendolyn Lawrie, Daniel Southam, Christopher Thompson, Natalie Williamson著、小島憲道 監訳, 錦織紳一, 野口徹, 平岡秀一 訳 [Link]

8. 溶液における分子認識と自己集合の原理:分子間相互作用 [Link][Amazon]平岡秀一サイエンス社 (2017) ISBN 978-4-7819-1403-9

7. 超分子金属錯体 (分担執筆、錯体化学会編)平岡秀一、塩谷光彦、三共出版、146-162, (2009).

6. 超分子サイエンス サイエンス&テクノロジー(分担執筆、監修:国武豊喜) 平岡秀一、NTS、242-250 (2009).

5. 最新 分子マシン -ナノで働く”高度な機械”を目指して (分担執筆、化学同人編集部編) 平岡秀一、61-70, (2008).

4. イオン液体の開発と展望(分担執筆、監修:大野弘幸) 塩谷光彦、平岡秀一、シーエムシー出版、90-98 (2008).

3. 実験化学講座第5版 (分担執筆、日本化学会編) 平岡秀一、塩谷光彦、丸善、Vol. 22,427-436 (2004).

2. 化学便覧基礎編I(改訂5版),(分担執筆、日本化学会編) 塩谷光彦、平岡秀一、丸善、781-782 (2004).

1. イオン性液体−開発の最前線と未来 (分担執筆、監修:大野弘幸) 塩谷光彦,平岡秀一、シーエムシー出版、90-98 (2003).

特許

1. ヘキサフェニルベンゼン骨格の位置選択的交互修飾方法平岡秀一,小島達央特願2013-45547,2013年3月7日特願2014-45233,2014年3月7日